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The Fractional Fourier Transform
The definition of the fractional Fourier transform is:

, where the kernel is given by 
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The Fractional Fourier domain
In order to represent a 
signal in a new coordinate 
system, we use the rotation 
in the time-frequency plane 
by performing the 
fractional FT of the signal.



The Linear Canonical Transform
The definition of the linear canonical transform is:
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The Freedom of The LCT with The FRFT       
The FRFT:

The LCT:
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The additivity property of the LCT 
The additivity property of the LCT

, where the ( e, f, g, h ) is
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The Inverse LCT
According to the additivity property, the inverse LCT is 
defined as:
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The Special Case of LCT (I)
Case 1 the ( a, b, c, d ) = ( 0, 1, -1, 0 )
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The Special Case of LCT (II)
Case 2 the ( a, b, c, d ) = ( 0, -1, 1, 0 )
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The Special Case of LCT (III)
Case 3 the ( a, b, c, d ) =
                                  ( cosα, sinα, -sinα, cosα )
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The Special Case of LCT (IV)
Case 4 the ( a, b, c, d ) = ( 1, 0, τ, 1 )
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The Special Case of LCT (V)
Case 5 the ( a, b, c, d ) = ( σ, 0, 0, 1/σ )
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WHY??? WHY???

• Why we need to discuss the fractional FT 
moment !?

• It can help us find out the extreme width of the 
signal in the fractional fourier domain.



Ambiguity Function

The definition of the ambiguity function is:
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Fractional Fourier Transform Moments

The fractional FT corresponds to a rotation of the AF
 

The relationship between the AF in this coordinate 
system

t = Rcos! w = Rsin! R "[#$,$] ! "[0,%)

Af

~

(R,! " # / 2) = X! (t)
2
exp( j2#Rt)dt

"$

$

%



Fractional Fourier Transform Moments

The zero order moment
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Fractional Fourier Transform Moments

The first order moments

rewrite it in a generalization of two special case
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Fractional Fourier Transform Moments

The second order moments is defined as:

The second order central moments is defined as: 
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The second order moments can be rewritten as:

The second order central moments can be rewritten as:
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first derivative of the second-order central FRFT

Optimal rotation angle

Fractional Fourier Transform Moments

dpα
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Time-Frequency Analysis
Short Time Fourier Transform

Garbor Transform

Wigner distribution function

Pseudo Wigner distribution function

S-method Transfomr
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• another drawback of the FT !?

• We can not judge the instant frequency of the 
signal.
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WHAT !! WHAT!!

• Is there any relationship between the FRFT and 
LCT with time-frequency analysis?

• The most important property of the FTFT and 
LCT --rotation property can be observed by the 
time-frequency analysis.
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Fourier transform
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Short Time Fourier Transform

The STFT of the signal in the fractional FT domain is 
defined as:

The rotation relationship is
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Wigner Distribution Function

The WDF of a signal x(t) is defined as

There is a big problem of the WDF ------ cross-term
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Wigner Distribution Function

The WDF of a signal x(t) is defined as

There is a big problem of the WDF ------ cross-term
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Wigner Distribution Function

The relations between WDF and FRFT

The relations between WDF and LCT
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Time-Frequency Analysis

The advantage of the WDF
the resolution is high

The disadvantage of the WDF
cross-term problem



Pseudo WDF
Pseudo Wigner Distribution Function

Short Time Fourier Transform

Wigner Distribution Function
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Pseudo WDF
The pseudo WDF can also be expressed in terms of the 
STFT as:
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Pseudo WDF
Expand the pseudo WDF
x(t) = x
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S-method
Based on the definition of the pseudo WDF, the S-
method for time frequency analysis can be written as:

on frequency-direction combined STFT

on time-direction combined STFT
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S-method

The S-method in this fractional domain is
Px (t, f ) = ST

x

!
(u,v + " / 2)z(")STx

a*

(u,v # " / 2)d"
#$

$

%



S-method

The S-method in this fractional domain is
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S-method

The S-method in this fractional domain is
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S-method

The S-method in this fractional domain is
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S-method

The S-method in this fractional domain is
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Rii (t,σ) is the auto-correlation of the received signal.
Rss (t,σ) is the auto-correlation of the signal.
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Filter Design
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Filter Design part 2
the two important issues to design a pass-stop band 
fractional filter in the FRFT domain is

1. how to choose the parameter α properly.

2. how to determine the cutoff criteria. 
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Filter Design part 2
STEP1 : Performing the S-method for the received signal.

STEP2 : Separating the signal and noise component by 
determining the cutoff lines on the t-w plane of the S-
method.

STEP3 : Determining the order of the FRFT. 

STEP4 : Filtering the noises by passing it through the filter 
with the parameter in step3. 
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Filter Design part 2
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SIGNAL: s(t) with S-method

ANALYSIS: t-domain

SIGNAL: s(t) with WDF

ANALYSIS: t-domain
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SIGNAL: s(t) with noise

ANALYSIS: t-w domain



Filter Design part 2

SIGNAL: the output of filter

ANALYSIS: w domain

compare the output of the 
filter with the signal

ANALYSIS: t-w domain



Conclusion 
We have illustrated the effects of the FRFT / LCT and 
the effects of the FRFT / LCT operations.
One of the application is S-method, finding the 
optimal angle and in this particular domain is the 
most particular one.
Using the STFT and LCT to design a filter, the 
performance is better than FT one.
 



Future Work

1. Improve the design filter in more efficiency way.

2. Find out more powerful tool without the cross-term 
problem to do the time-frequency analysis.

3. Look for more application of FRFT and LCT.
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