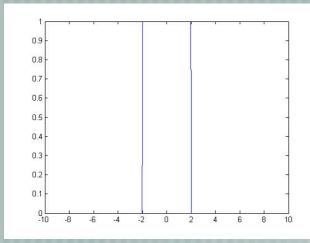
The Fractional Fourier Transform and The Linear Canonical Transform

The Fourier Transform

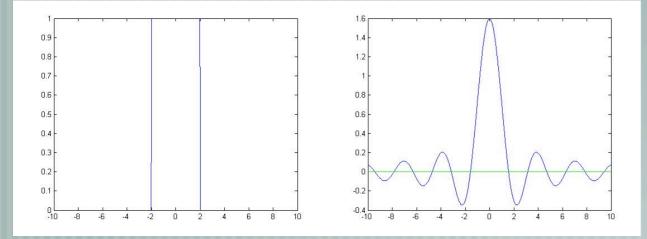
Fourier Transform $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$ Inverses Fourier Transform $f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{j\omega t} F(\omega) d\omega$

[input is a even function

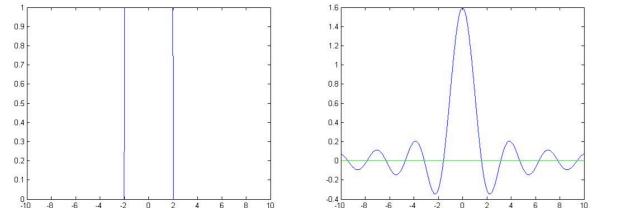
[input is a even function

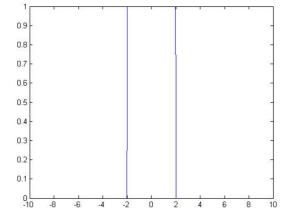


[input is a even function

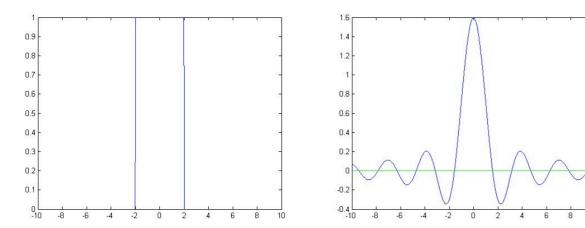


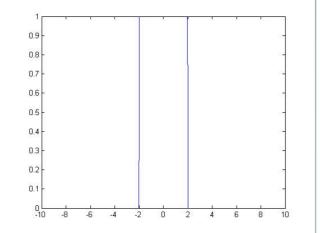
[input is a even function

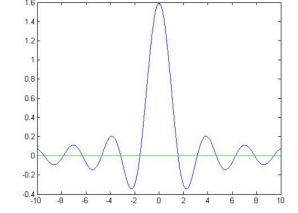




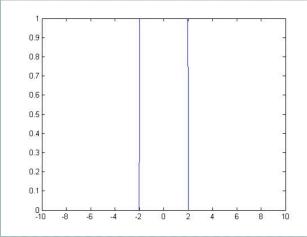
[input is a even function

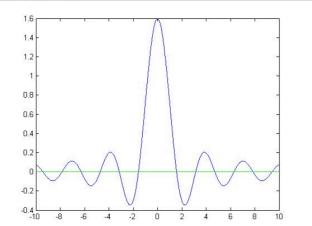


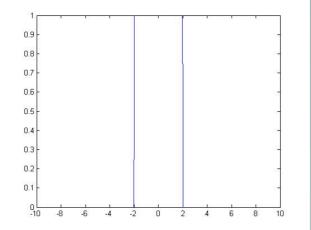


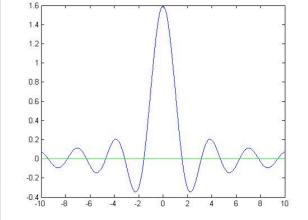


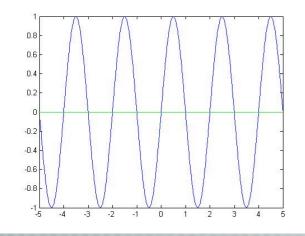
[input is a even function



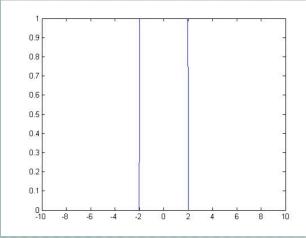


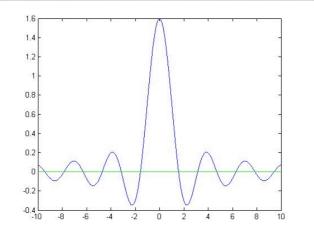


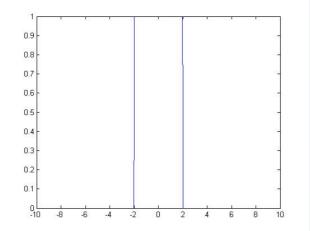


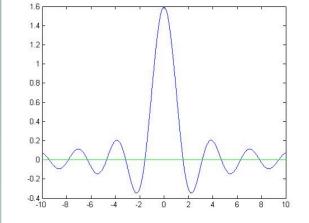


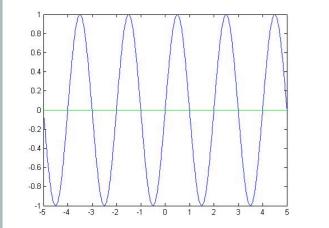
[input is a even function

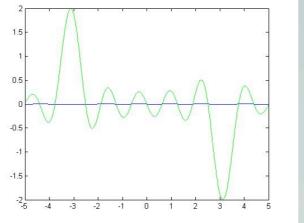




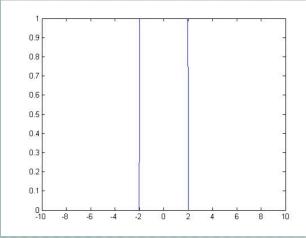


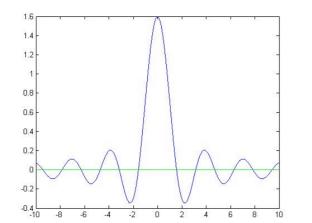


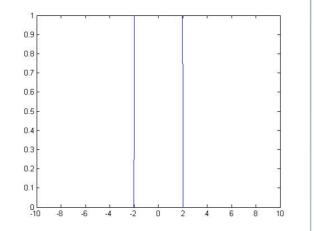


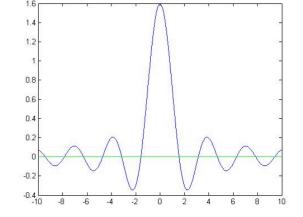


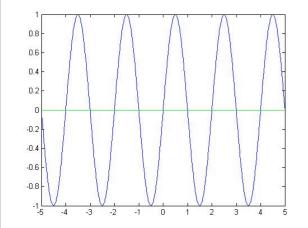
[input is a even function

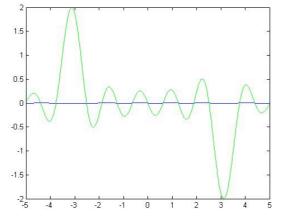


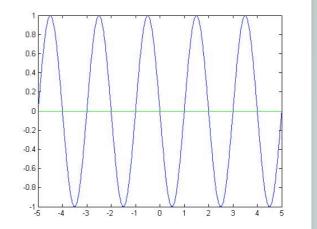




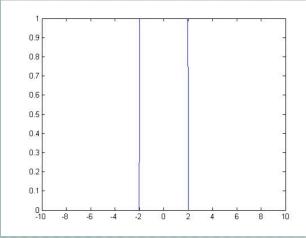


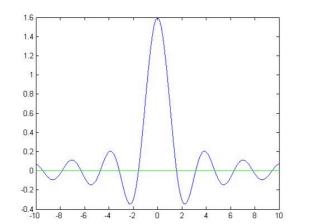


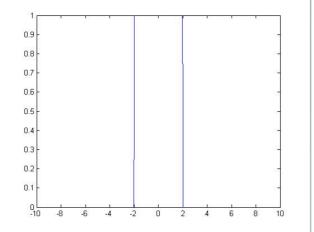


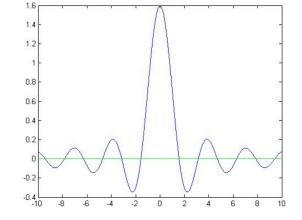


[input is a even function

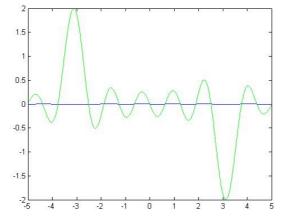


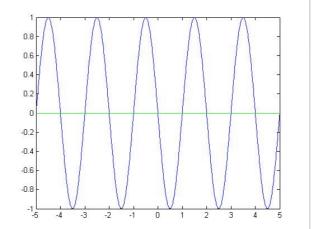


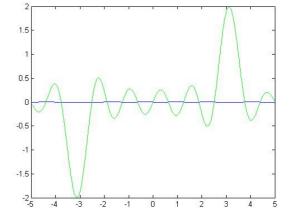












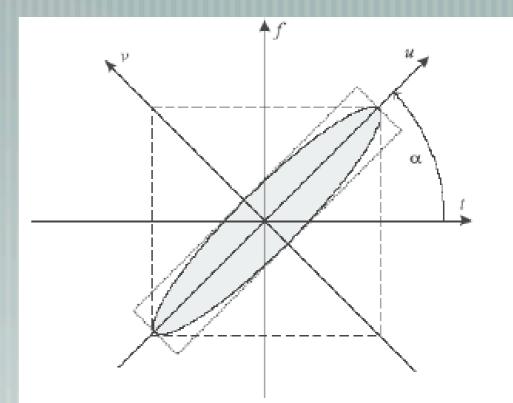
The Fractional Fourier Transform

The definition of the fractional Fourier transform is: $O_F^{\alpha}(f(t)) = X_{\alpha}(u) = \int_{-\infty}^{\infty} K(\alpha, t, u) x(t) dt$

, where the kernel is given by $K(\alpha, t, u) = \sqrt{\frac{1 - j \cot \alpha}{2\pi}} e^{\frac{j}{2} \cot \alpha u^2} e^{-j \csc \alpha u t} e^{\frac{j}{2} \cot \alpha t^2}$ $X_{\alpha}(u) = x(u) \quad \text{where } \alpha = 2N\pi \text{ N is an integer}$ $X_{\alpha}(u) = x(-u) \quad \text{where } \alpha = (2N+1)\pi \text{ N is an integer}$

The Fractional Fourier domain

In order to represent a signal in a new coordinate system, we use the rotation in the time-frequency plane by performing the fractional FT of the signal.



The Linear Canonical Transform

[The definition of the linear canonical transform is:

when $b \neq 0$

$$O_F^{(a,b,c,d)}(f(t)) = F_{(a,b,c,d)}(u) = \sqrt{\frac{1}{j2\pi b}} e^{\frac{jd}{2b}u^2} \int_{-\infty}^{\infty} e^{-\frac{j}{b}ut} e^{\frac{ja}{2b}t^2} f(t)dt$$

when b=0

 $O_F^{(a,0,c,d)}(f(t)) = F_{(a,0,c,d)}(u) = \sqrt{d}e^{\frac{j}{2}cdu^2}f(du)$

ad - bc = 1

The Freedom of The LCT with The FRFT

$\int_{-\infty}^{\infty} \mathbf{The \ FRFT:}$ $O_{F}^{\alpha}(f(t)) = X_{\alpha}(u) = \int_{-\infty}^{\infty} K(\alpha, t, u) x(t) dt$ $\int_{-\infty}^{\infty} \mathbf{The \ LCT:}$ when b \neq 0

$$O_F^{(a,b,c,d)}(f(t)) = F_{(a,b,c,d)}(u) = \sqrt{\frac{1}{j2\pi b}} e^{\frac{jd}{2b}u^2} \int_{-\infty}^{\infty} e^{-\frac{j}{b}ut} e^{\frac{ja}{2b}t^2} f(t)dt$$

	FRFT	LCT
number of the variant	1	4
freedom of transform	1	3

The additivity property of the LCT

The additivity property of the LCT

 $O_F^{(a_2,b_2,c_2,d_2)}(O_F^{(a_1,b_1,c_1,d_1)}(f(t))) = O_F^{(e,f,g,h)}(f(t))$

, where the (e, f, g, h) is

$$\begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$$

The Inverse LCT

According to the additivity property, the inverse LCT is defined as:

$$O_F^{(d,-b,-c,a)}(O_F^{(a,b,c,d)}(f(t))) = f(t)$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \because ad - bc = 1$$

The Special Case of LCT (I)

Case 1 the
$$(a, b, c, d) = (0, 1, -1, 0)$$

when $b \neq 0$

$$O_F^{(a,b,c,d)}(f(t)) = F_{(a,b,c,d)}(u) = \sqrt{\frac{1}{j2\pi b}} e^{\frac{jd}{2b}u^2} \int_{-\infty}^{\infty} e^{-\frac{j}{b}ut} e^{\frac{ja}{2b}t^2} f(t) dt$$

$$\rightarrow F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$$

$$O_F^{(0,1,-1,0)}(f(t)) = \sqrt{-j}FT(f(t))$$

The Special Case of LCT (II)

 $-\left(\begin{array}{c} \text{Case 2 the} (a, b, c, d) = (0, -1, 1, 0) \\ O_F^{(0, -1, 1, 0)}(F(\omega)) = \sqrt{j} IFT(F(\omega)) \end{array} \right)$

The Special Case of LCT (III)

Case 3 the (
$$a, b, c, d$$
) =
($\cos \alpha, \sin \alpha, -\sin \alpha, \cos \alpha$)

 $O_F^{(\cos\alpha,\sin\alpha,-\sin\alpha,\cos\alpha)}(f(t)) = (e^{-j\alpha})^{1/2} O_F^{\alpha}(f(t))$

The Special Case of LCT (IV)

 $\int Case 4 \text{ the } (a, b, c, d) = (1, 0, \tau, 1)$ $O_F^{(\alpha, 0, c, d)}(f(t)) = e^{\frac{j}{2}\tau u^2} f(t)$

The Special Case of LCT (V)

 $\int Case 5 the (a, b, c, d) = (\sigma, 0, 0, 1/\sigma)$ $O_F^{(\sigma,0,0,\sigma^{-1})}(f(t)) = \sqrt{\sigma^{-1}} e^{\frac{j}{2\sigma}u^2} f(\sigma^{-1}t)$

WHY??? WHY???

WHY??? WHY???

Why we need to discuss the fractional FT moment !?

WHY??? WHY???

Why we need to discuss the fractional FT moment !?

 It can help us find out the extreme width of the signal in the fractional fourier domain.

Ambiguity Function

 $\begin{bmatrix} \text{The definition of the ambiguity function is:} \\ A_f(t,w) = \int_{-\infty}^{\infty} x(\tau + t/2) x^* (\tau - t/2) \exp(-j2\pi w t) d\tau \end{bmatrix}$

The fractional FT corresponds to a rotation of the AF
 t = R cos α w = R sin α R ∈ [-∞,∞] α ∈ [0,π)
 The relationship between the AF in this coordinate system

 $\widetilde{A_f}(R,\alpha - \pi/2) = \int_{-\infty}^{\infty} |X_{\alpha}(t)|^2 \exp(j2\pi Rt) dt$

The zero order moment

$$E = \int_{-\infty}^{\infty} |X_{\alpha}(t)|^2 dt = \tilde{A}_f (R, \alpha - \pi / 2)|_{R=0} = A_f(0, 0)$$

The first order moments $m_{\alpha} = \int_{-\infty}^{\infty} \left| X_{\alpha}(t) \right|^{2} t dt = \frac{1}{E} \frac{1}{2\pi j} \frac{\partial \tilde{A}_{f}(R, \alpha - \pi/2)}{\partial R} \bigg|_{R=0}$ $\frac{\partial \tilde{A}_{f}(R,\alpha-\pi/2)}{\partial R}\bigg|_{R=0,\alpha=\pi/2} = \frac{\partial A_{f}(t,w)}{\partial t}\bigg|_{t=0,w=0} = 2\pi j \int_{-\infty}^{\infty} |X_{\pi/2}(w)|^{2} w dw$ $\frac{\partial \tilde{A}_{f}(R,\alpha-\pi/2)}{\partial R}\bigg|_{R=0,\alpha=\pi} = \frac{\partial A_{f}(t,w)}{\partial w}\bigg|_{t=0,w=0} = 2\pi j \int_{-\infty}^{\infty} |x(-t)|^{2} t dt$ rewrite it in a generalization of two special case

 $m_{\alpha} = m_0 \cos \alpha + m_{\pi/2} \sin \alpha$

 $-\begin{bmatrix} \text{The second order moments is defined as:} \\ \omega_{\alpha} = \frac{1}{E} \int_{-\infty}^{\infty} |X_{\alpha}(t)|^{2} t^{2} dt = \frac{1}{E} \left(\frac{1}{j2\pi}\right)^{2} \frac{\partial^{2} \tilde{A}_{f}(R,\alpha-\pi/2)}{\partial R^{2}} \Big|_{R=0} \\ -\begin{bmatrix} \text{The second order central moments is defined as:} \\ P_{\alpha} = \frac{1}{E} \int_{-\infty}^{\infty} |X_{\alpha}(t)|^{2} (t-m_{\alpha})^{2} dt = (\omega_{\alpha}-m_{\alpha}^{2}) \end{bmatrix}$

 $-\begin{bmatrix} \text{The second order moments can be rewritten as:} \\ \omega_{\alpha} = \omega_{0} \cos^{2} \alpha + \omega_{\pi/2} \sin^{2} \alpha + [\omega_{\pi/4} - (\omega_{0} + \omega_{\pi/2})/2] \sin 2\alpha \\ -\begin{bmatrix} \text{The second order central moments can be rewritten as:} \\ p_{\alpha} = p_{0} \cos^{2} \alpha + p_{\pi/2} \sin^{2} \alpha + [\omega_{\pi/4} - m_{0}m_{\pi/2} - (\omega_{0} + \omega_{\pi/2})/2] \sin 2\alpha \end{bmatrix}$

first derivative of the second-order central FRFT $\frac{dp_{\alpha}}{d\alpha} = (p_{\pi/2} - p_0)\sin 2\alpha + [2(\omega_{\pi/4} - m_0 m_{\pi/2}) - (\omega_0 + \omega_{\pi/2})]\cos 2\alpha = 0$ [Optimal rotation angle $2(\omega_{\mu\nu} - m_0 m_{\nu\nu}) - (\omega_0 + \omega_{\nu\nu})$

$$\tan 2\alpha_{e} = \frac{2(\omega_{\pi/4} - m_{0}m_{\pi/2}) - (\omega_{0} + \omega_{\pi/2})}{(p_{0} - p_{\pi/2})}$$

Time-Frequency Analysis

Short Time Fourier Transform Garbor Transform Wigner distribution function **Pseudo Wigner distribution function** S-method Transfomr

WHAT !? WHAT!?

WHAT !? WHAT!?

• another drawback of the FT !?

WHAT !? WHAT!?

• another drawback of the FT !?

• We can not judge the instant frequency of the signal.

WHAT !! WHAT!!

WHAT !! WHAT!!

 Is there any relationship between the FRFT and LCT with time-frequency analysis?

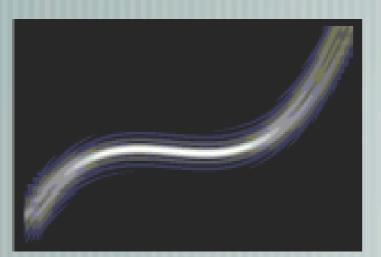
WHAT !! WHAT!!

 Is there any relationship between the FRFT and LCT with time-frequency analysis?

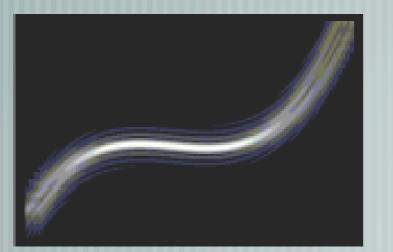
 The most important property of the FTFT and LCT --rotation property can be observed by the time-frequency analysis.

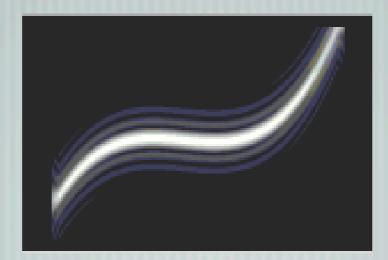
Fourier transform $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$ Short time fourier transform $ST_{x}(t, f) = \int_{-\infty}^{\infty} x(t + t_{0})g^{*}(t_{0})\exp(-j2\pi t_{0}f) dt_{0}$

 $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$ $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$ $\int Short time fourier transform$ $ST_x(t, f) = \int_{-\infty}^{\infty} x(t+t_0)g^*(t_0)\exp(-j2\pi t_0 f) dt_0$

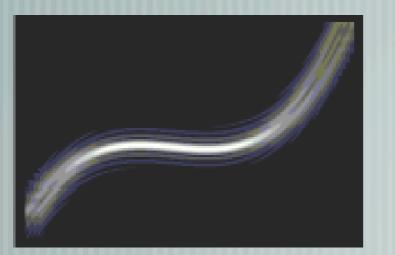


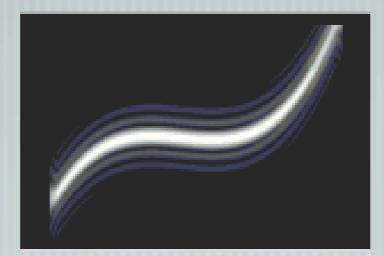
 $F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt$ - **Short time fourier transform** $ST_x(t, f) = \int_{-\infty}^{\infty} x(t+t_0)g^*(t_0)\exp(-j2\pi t_0 f) dt_0$

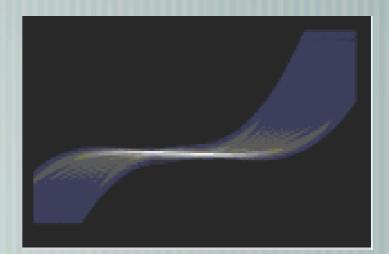




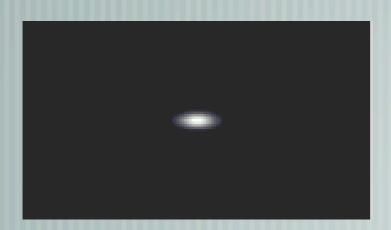
 $-\begin{bmatrix} Fourier transform \\ F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt \\ -\begin{bmatrix} Short time fourier transform \\ ST_x(t,f) = \int_{-\infty}^{\infty} x(t+t_0)g^*(t_0)\exp(-j2\pi t_0 f) dt_0 \end{bmatrix}$

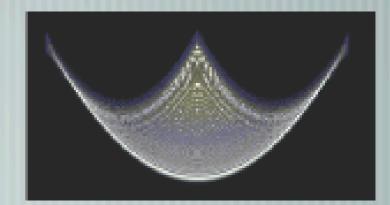


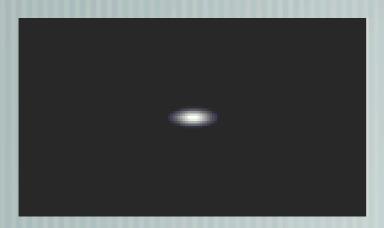


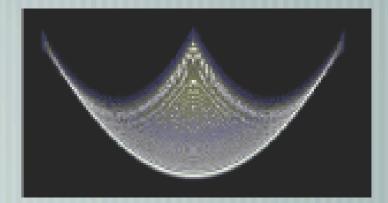


The STFT of the signal in the fractional FT domain is defined as: $ST_x^{\alpha}(u,v) = \int_{-\infty}^{\infty} X_{\alpha}(u+u_0)g^*(u_0)\exp(-j2\pi u_0 v)du_0$ The rotation relationship is $\binom{t}{f} = \binom{\cos \alpha & -\sin \alpha}{\sin \alpha & \cos \alpha}\binom{u}{v}$









The relations between WDF and FRFT $W_{F_{\alpha}}(u,v) = W_f(u\cos\alpha - v\sin\alpha, u\sin\alpha + v\cos\alpha)$

[The relations between WDF and LCT

$$W_{F_{(a,b,c,d)}}(u,v) = W_f(du - bv, -cu + av)$$
$$W_{F_{(a,b,c,d)}}(au + bv, cu + dv) = W_f(u,v)$$

The advantage of the STFT no cross-term problem

The advantage of the STFT no cross-term problem

The disadvantage of the STFT the resolution is low

The advantage of the WDF the resolution is high

- The advantage of the WDF the resolution is high
- The disadvantage of the WDF cross-term problem

Pseudo WDF

Pseudo Wigner Distribution Function $PWD_{x}(t,f) = \int x(t+\tau/2)x^{*}(t-\tau/2)g^{*}(\tau/2)g(-\tau/2)\exp(-j2\pi\tau f)d\tau$ **Short Time Fourier Transform** $ST_{x}(t,f) = \int x(t+t_{0})g^{*}(t_{0})\exp(-j2\pi t_{0}f)dt_{0}$ **Wigner Distribution Function** $W_{f}(t,w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} x(t + \tau/2) x^{*}(t - \tau/2) e^{-jw\tau} d\tau$

Pseudo WDF

The pseudo WDF can also be expressed in terms of the STFT as:

 $PWD_{x}(t,f) = \int_{-\infty}^{\infty} ST_{x}(t,f+\theta/2)ST_{x}^{*}(t,f-\theta/2)d\theta$

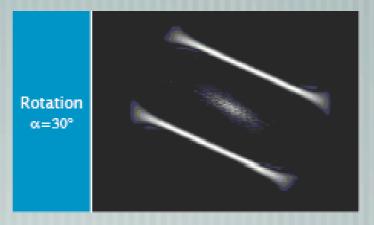
Pseudo WDF

Expand the pseudo WDF $x(t) = \sum_{i=1}^{M} x_i(t)$ $PWD_x(t, f) = \int_{-\infty}^{\infty} ST_x(t, f + \theta/2)ST_x^*(t, f - \theta/2)d\theta$ $PWD_x(t, f) = \sum_{i=1}^{M} PWD_{x_i}(t, f) \qquad (auto - terms)$ $+ \sum_{i=1}^{M} \sum_{k=1k \neq i}^{M} PWD_{x_i, x_k}(t, f) \qquad (cross - terms)$

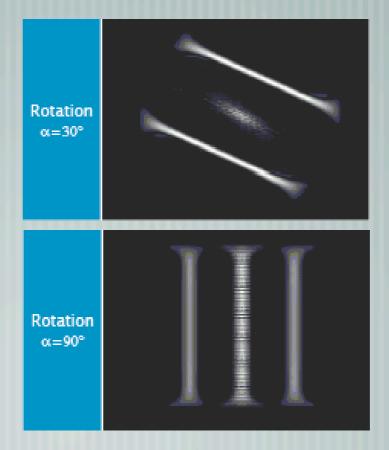
Based on the definition of the pseudo WDF, the Smethod for time frequency analysis can be written as: on frequency-direction combined STFT $P_x(t,f) = \int ST_x(t,f+\theta/2)z(\theta)ST_x^*(t,f-\theta/2)d\theta$ on time-direction combined STFT $P_x(t,f) = \int ST_x(t+\theta/2,f)z(\theta)ST_x^*(t-\theta/2,f)\exp(-j2\pi f\theta)d\theta$

$\begin{bmatrix} \text{The S-method in this fractional domain is} \\ P_x(t,f) = \int_{-\infty}^{\infty} ST_x^{\alpha}(u,v+\theta/2)z(\theta)ST_x^{a^*}(u,v-\theta/2)d\theta \end{bmatrix}$

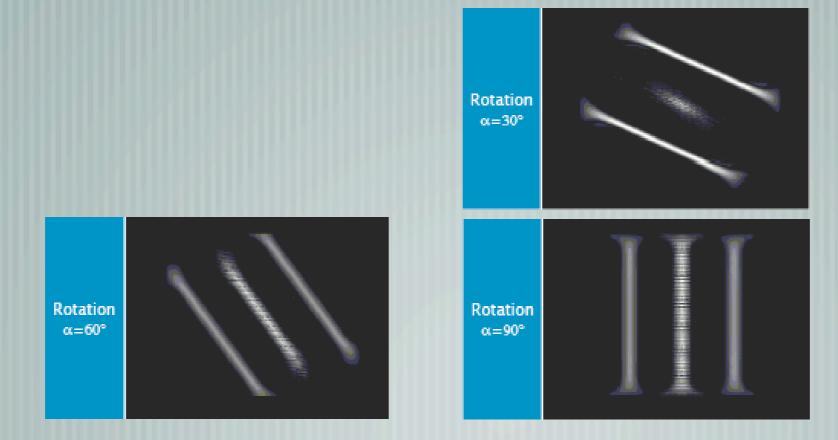
The S-method in this fractional domain is $P_{x}(t,f) = \int_{x}^{\infty} ST_{x}^{\alpha}(u,v+\theta/2)z(\theta)ST_{x}^{a^{*}}(u,v-\theta/2)d\theta$



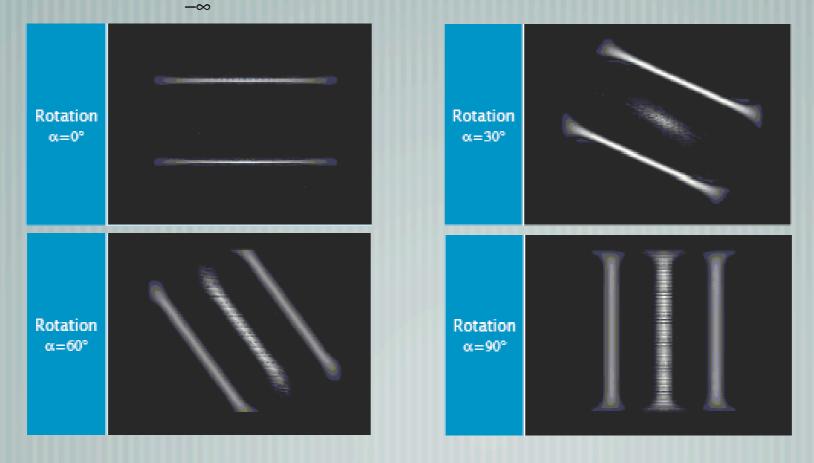
The S-method in this fractional domain is $P_{x}(t,f) = \int_{x}^{\infty} ST_{x}^{\alpha}(u,v+\theta/2)z(\theta)ST_{x}^{a^{*}}(u,v-\theta/2)d\theta$



The S-method in this fractional domain is $P_x(t, f) = \int_{x}^{\infty} ST_x^{\alpha}(u, v + \theta/2)z(\theta)ST_x^{a^*}(u, v - \theta/2)d\theta$



The S-method in this fractional domain is $P_{x}(t,f) = \int_{x}^{\infty} ST_{x}^{\alpha}(u,v+\theta/2)z(\theta)ST_{x}^{a^{*}}(u,v-\theta/2)d\theta$

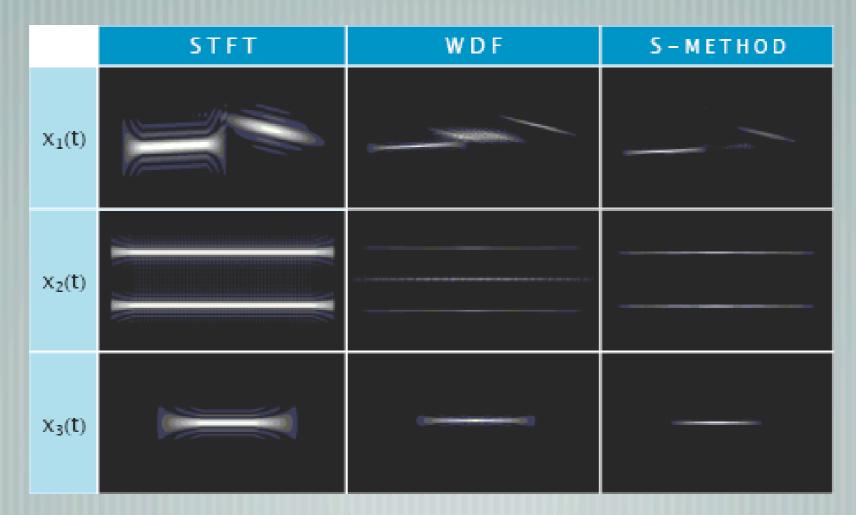


Comparison

comparison with the performance of STFT, WDF, Smethod

Comparison

comparison with the performance of STFT, WDF, Smethod



Filter Design part 1

— Optimal canonical filter:

Filter Design part 1

Optimal canonical filter:

 $R_{si}(t,\sigma)$ is the cross-correlation between the original signal s(t) and the received signal $x_i(t)$. $R_{ii}(t,\sigma)$ is the auto-correlation of the received signal. $R_{ss}(t,\sigma)$ is the auto-correlation of the signal.

Filter Design part 1

Optimal canonical filter:

 $R_{si}(t,\sigma)$ is the cross-correlation between the original signal s(t) and the received signal $x_i(t)$. $R_{ii}(t,\sigma)$ is the auto-correlation of the received signal. $R_{ss}(t,\sigma)$ is the auto-correlation of the signal.

 $H_{opt}(u) = R_{S,I}(u,u) / R_{I,I}(u,u)$

Optimal canonical filter:

 $R_{si}(t,\sigma)$ is the cross-correlation between the original signal s(t) and the received signal $x_i(t)$. $R_{ii}(t,\sigma)$ is the auto-correlation of the received signal. $R_{ss}(t,\sigma)$ is the auto-correlation of the signal.

$$H_{opt}(u) = R_{S,I}(u,u) / R_{I,I}(u,u)$$
$$R_{I,I}(u,u) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{(a,b,c,d)}(u,t) K_{(a,b,c,d)}^{*}(u,\sigma) R_{ii}(t,\sigma) dt d\sigma$$

Optimal canonical filter:

 $R_{si}(t,\sigma)$ is the cross-correlation between the original signal s(t) and the received signal $x_i(t)$. $R_{ii}(t,\sigma)$ is the auto-correlation of the received signal. $R_{ss}(t,\sigma)$ is the auto-correlation of the signal.

$$H_{opt}(u) = R_{S,I}(u,u) / R_{I,I}(u,u)$$
$$R_{I,I}(u,u) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{(a,b,c,d)}(u,t) K_{(a,b,c,d)}^{*}(u,\sigma) R_{ii}(t,\sigma) dt d\sigma$$
$$R_{S,I}(u,u) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{(a,b,c,d)}(u,t) K_{(a,b,c,d)}^{*}(u,\sigma) R_{si}(t,\sigma) dt d\sigma$$

mean square error (MSE)

$$MSE = \int_{-\infty}^{\infty} \left[R_{s,s}(u,u) - 2 \operatorname{Re} \left(H_{opt}^{\&}(u) R_{S,I}(u,u) \right) + \left| H_{opt}(u) \right|^{2} R_{I,I}(u,u) \right] du$$

mean square error (MSE)

$$MSE = \int_{-\infty}^{\infty} \left[R_{s,s}(u,u) - 2\operatorname{Re}\left(H_{opt}^{\&}(u)R_{s,I}(u,u)\right) + \left|H_{opt}(u)\right|^{2}R_{I,I}(u,u)\right] du$$
$$R_{s,s}(u,u) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K_{(a,b,c,d)}(u,t)K_{(a,b,c,d)}^{*}(u,\sigma)R_{s,s}(t,\sigma)dtd\sigma$$

the two important issues to design a pass-stop band filter in the FRFT domain is

the two important issues to design a pass-stop band fractional filter in the FRFT domain is

1. how to choose the parameter α properly.

the two important issues to design a pass-stop band fractional filter in the FRFT domain is

1. how to choose the parameter α properly.

2. how to determine the cutoff criteria.

STEP1 : Performing the S-method for the received signal.

STEP1 : Performing the S-method for the received signal.
 STEP2 : Separating the signal and noise component by determining the cutoff lines on the t-w plane of the S-method.

- STEP1 : Performing the S-method for the received signal.
 STEP2 : Separating the signal and noise component by determining the cutoff lines on the t-w plane of the S-method.
- **STEP3 : Determining the order of the FRFT.**

- STEP1 : Performing the S-method for the received signal.
 STEP2 : Separating the signal and noise component by determining the cutoff lines on the t-w plane of the S-method.
- **STEP3 : Determining the order of the FRFT.**
- **STEP4 : Filtering the noises by passing it through the filter with the parameter in step3.**

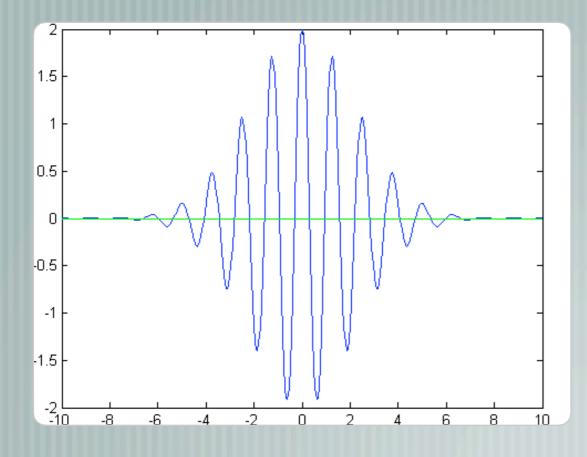
 $f_{1}(t) = O_{F}^{-\alpha_{1}} \left\{ O_{F}^{\alpha_{1}} \left[f(t) \right] H_{1}(u) \right\},$ $f_{2}(t) = O_{F}^{-\alpha_{2}} \left\{ O_{F}^{\alpha_{2}} \left[f_{1}(t) \right] H_{2}(u) \right\},$ \vdots $f_{n-1}(t) = O_{F}^{-\alpha_{n-1}} \left\{ O_{F}^{\alpha_{n-1}} \left[f_{n-2}(t) \right] H_{n-1}(u) \right\},$ $r(t) = O_{F}^{-\alpha_{n}} \left\{ O_{F}^{\alpha_{n}} \left[f_{n-1}(t) \right] H_{n}(u) \right\}$

example $s(t) = 2\cos(5t)e^{(-t^2/10)}$ $n(t) = 0.5e^{j0.23t^2} + 0.5e^{j0.3t^2 + j8.5t} + 0.5e^{j0.46t^2 - j9.6t}$

SIGNAL: s(t) without noise **ANALYSIS:** t-domain

SIGNAL: s(t) with noise ANALYSIS: t-domain

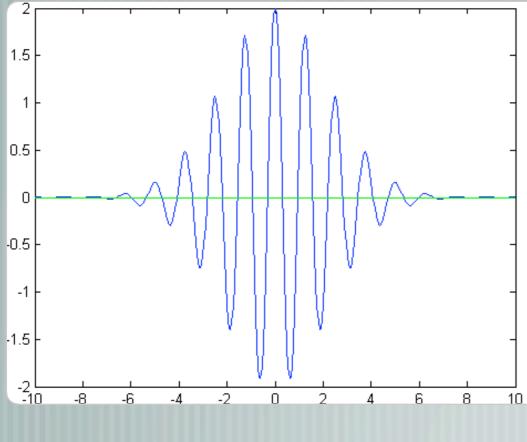
Example $s(t) = 2\cos(5t)e^{(-t^2/10)}$ $n(t) = 0.5e^{j0.23t^2} + 0.5e^{j0.3t^2 + j8.5t} + 0.5e^{j0.46t^2 - j9.6t}$



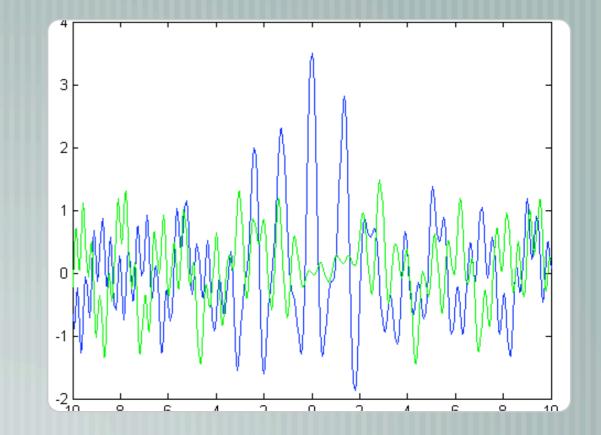
SIGNAL: s(t) without noise **ANALYSIS:** t-domain

SIGNAL: s(t) with noise **ANALYSIS:** t-domain

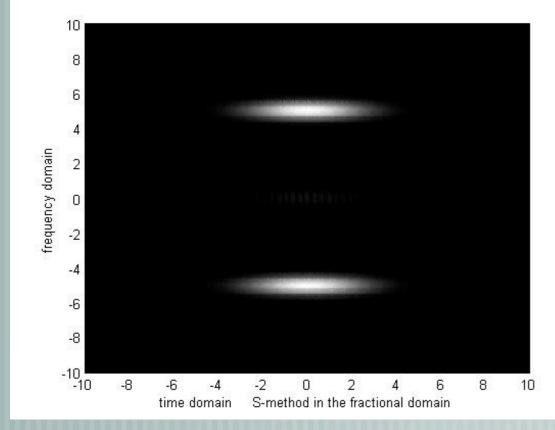
example $s(t) = 2\cos(5t)e^{(-t^2/10)}$ $n(t) = 0.5e^{j0.23t^2} + 0.5e^{j0.3t^2 + j8.5t} + 0.5e^{j0.46t^2 - j9.6t}$

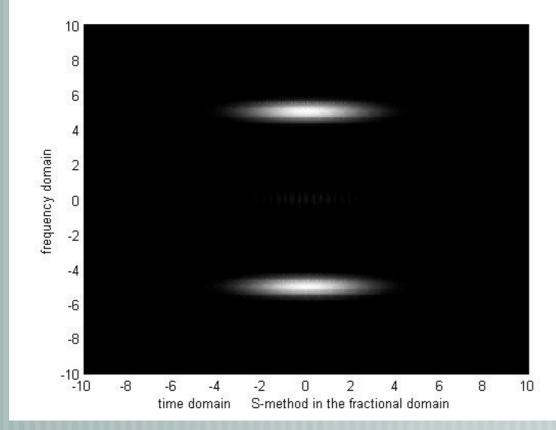


SIGNAL: s(t) without noise **ANALYSIS:** t-domain

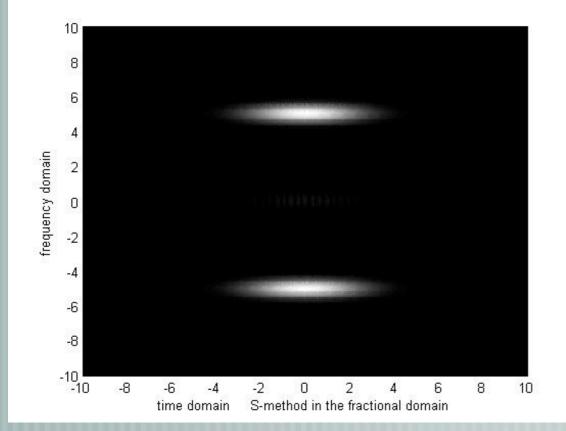


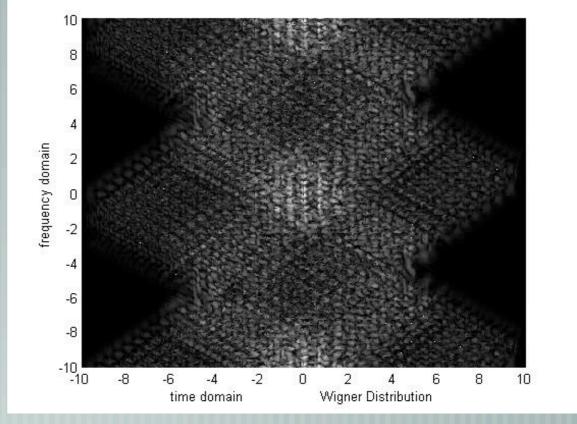
SIGNAL: s(t) with noise **ANALYSIS:** t-domain



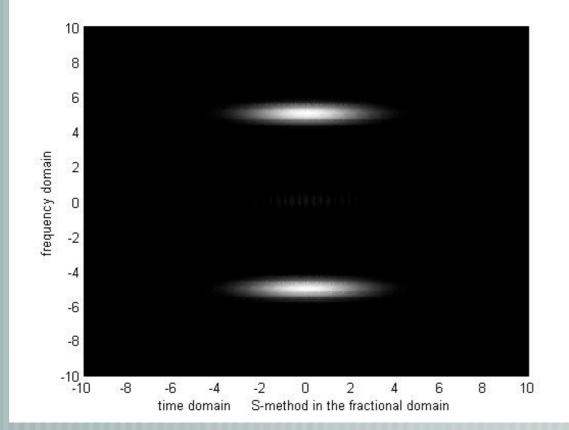


SIGNAL: s(t) with S-method **ANALYSIS:** t-domain

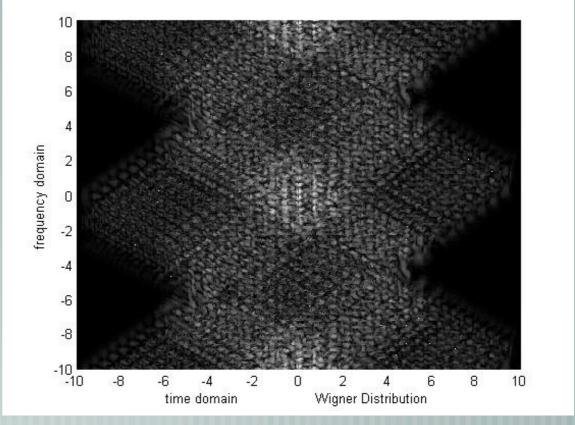




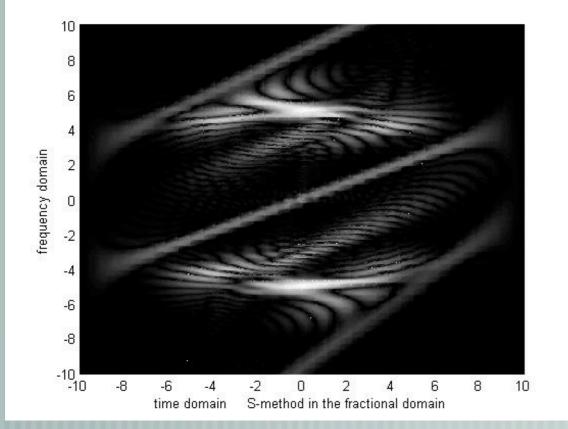
SIGNAL: s(t) with S-method **ANALYSIS:** t-domain



SIGNAL: s(t) with S-method **ANALYSIS:** t-domain



SIGNAL: s(t) with WDF **ANALYSIS:** t-domain



8 6 frequency domain 2 0 -2 -6 -8 -10 -10 -8 -2 -6 -4 0 2 6 8 10 4

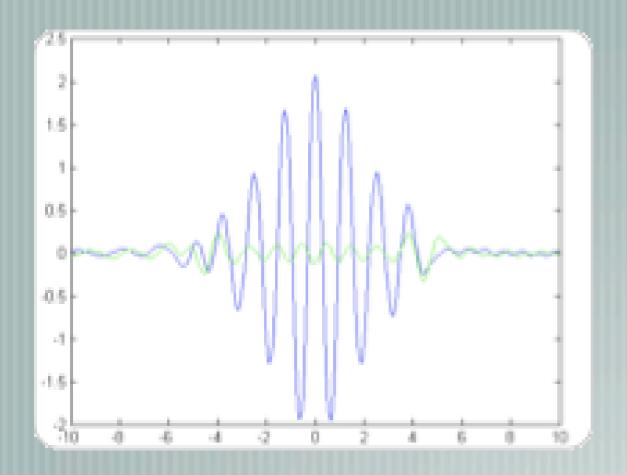
S-method in the fractional domain

10

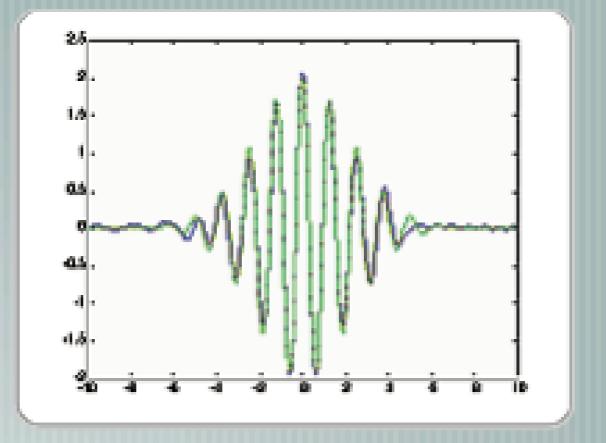
SIGNAL: s(t) with noise **ANALYSIS:** t-w domain

SIGNAL: s(t) with noise **ANALYSIS:** t-w domain

time domain



SIGNAL: the output of filter ANALYSIS: w domain



compare the output of the filter with the signal **ANALYSIS:** t-w domain

Conclusion

We have illustrated the effects of the FRFT / LCT and the effects of the FRFT / LCT operations.
One of the application is S-method, finding the optimal angle and in this particular domain is the most particular one.

Using the STFT and LCT to design a filter, the performance is better than FT one.

Future Work

- Improve the design filter in more efficiency way.
 Find out more powerful tool without the cross-term problem to do the time-frequency analysis.
 - **3. Look for more application of FRFT and LCT.**

Reference

[1] H.M. Ozaktas, Z. Zalevsky, M. A. Kutay, The Fractional Fourier transform with Applications in Optics and Signal Processing, John Wiley & Sons, 2001.

[2] J. J. Ding, Research of Fractional Fourier Transform and Linear Canonical Transform, PH.D. thesis, National Taiwan University, Taipei, Taiwan, ROC, 2001.

[3] S. C. Pei, J. J. Ding, "Relations between Gabor Transforms and Fractional Fourier Transforms and Their Applications for Signal Processing, " Revised Version: T-SP-0476302006. R1

[4] T. Alieva, M.J. Bastiaans, "On fractional Fourier transform moments", IEEE Signal Process. Lett. 7 (2000) 320–323.

[5] L.B. Almeida, "The fractional Fourier transform and time-frequency representations", IEEE Trans. Signal Process.

[6] L.J. Stankovi,c, " A method for time-frequency analysis ", IEEE Trans. Signal Process. 42 (January 1994) 225–229.